

Регулятор температуры DTC.

Руководство по эксплуатации.

1. Меры предосторожности

Перед началом использования регулятора температуры DTA, далее по тексту, – прибор, обязательно прочтите данное руководство по эксплуатации.

Внимание! Опасность поражения электрическим током! Не прикасайтесь к клеммам питания.

Не вскрывайте прибор, не убедившись в отсутствии на клеммах напряжения питания.

Предупреждение!

Данный прибор является устройством открытого исполнения, т.е. не имеет защиты от попадания твердых тел и проникновения влаги (IP00). Убедитесь в том, что требования к применению оборудования в данном производстве не допускают возможности возникновения человеческих травм и серьезного материального ущерба при использовании прибора.

- 1. Требуется использование имеющихся соединений без применения пайки (винтовое соединение) с контролем усилия затяжки. Рекомендуемое усилие затяжки: 0.4 Н·м (4кг·см).
- 2. Не допускайте попадания внутрь прибора пыли и металлических изделий. Это может привести к повреждению прибора.
- 3. Не пытайтесь разбирать прибор. Не прилагайте недопустимых внешних воздействий к корпусу прибора. Это может привести к его отказу.
- 4. Не подключайте провода к терминалам функции «No».
- 5. Убедитесь, что все провода подключены в соответствии с полярностью клемм.
- 6. Не устанавливайте и не используйте прибор в местах с присутствием следующих факторов:
 - газы или жидкости, способные вызвать коррозию;
 - высокий уровень влажности;
 - высокий уровень радиации;
 - наличие вибраций, возможность присутствия ударов;
 - высокие значения напряжений, частот.
- 7. При подключении и замене термодатчика необходимо убедится в отсутствии напряжения питания на клеммах прибора.
- 8. При подключении проводов термопары убедитесь в наличии термокомпенсационного провода, требующегося для большинства типов термопар.
- 9. При подключении платинового термометра сопротивления необходимо использовать наиболее короткие (по возможности) длины проводов и максимально удалять провода питания от сигнальных проводов термометра сопротивления во избежание влияния наводок и помех на полезный сигнал.
- 10. Корпус прибора не обеспечивает защиту от попадания твердых тел и проникновения влаги (IP00). В связи с этим он должен быть установлен в месте, защищенном от воздействия высоких температур, влажности, капель воды, пыли, коррозионно-опасных материалов, электрических разрядов и вибраций.
- 11. Перед включением прибора убедитесь, что все соединения выполнены правильно, в противном случае возможно серьезное повреждение прибора.
- 12. После отключения питания нельзя прикасаться к внутренним цепям прибора в течение одной минуты до полной разрядки внутренних конденсаторов. Иначе возможно поражением электрическим разрядом.

_	•	DTO
	емпературный контроллер	1)1(:
•	chilicpat yphibin Rolliposisiep	\mathbf{p}

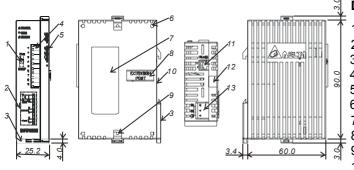
2

13. Не устанавливайте прибор в непосредственной близости от источника тепла: может ухудшаться точность измерения.

2. Расшифровка обозначения

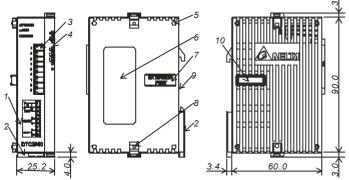
DTC 1 2 3 4 5

DTC	Регулятор температуры Delta серии С	
1- Назначение	1: Базовый блок (первый)	
	2: Модуль расширения (подключается к базовому)	
2-	0: отсутствуют	
Дополнительные	1: одна группа дополнительных выходов (пока недоступно)	
выходы	2: две группы дополнительных выходов (пока недоступно)	
3, 4 - Опции	00: отсутствуют	
	01: вход для подключения датчика тока (пока недоступно)	
	02: дискретный вход управления (пока недоступно)	
5 – Тип	R: Релейный (однополюсный нормально-открытый) 250VAC/3A	
основных V: Импульсное напряжение DC12V (+10%~-20%), 40mA		
выходов	С: Токовый 4÷20 mA	
	L: Линейное напряжение 0÷10 В	


Примечание: Приборы в стандартной комплектации имеют напряжение питания 24VDC, 2 основных релейных выхода и порт RS-485.

3. Технические и функциональные характеристики

Напряжение питания	24 В постоянного тока
Рабочий диапазон напряжений	90%-110% от номинального
Потребляемая мощность	Максимально 3Вт на каждый модуль
Входной сигнал	Термопары: K, J, T, E, N, R, S, B, U, L, ТХК
	Платиновые термосопротивления: тип Pt100, JPt100
	Аналоговый: 0-5В, 0-10В, 0-20мА, 4-20мА, 0-50мВ
Дискретность измерения	Аналоговый вход: 0.15 сек; термодатчик: 0.4 сек.
Метод управления	- ПИД-регулятор
	- ПИД-регулятор с программным управлением
	- двухпозиционный регулятор (ВКЛ/ВЫКЛ)
	- ручная регулировка
Управляющие выходы	R: релейный выход, однополюсный нормально-открытый
	- 250 В переменного тока, 3 А (резистивная нагрузка)
	V: импульсный выход по напряжению – $12B + 10\% \sim$ -
	20% (Макс. ток нагрузки 40 мА)
	С: аналоговый выход – 4-20мА постоянного тока
	(сопротивление нагрузки – макс. 500 Ом)
	L: аналоговый выход по напряжению –0-10B постоянного
	тока (сопротивление нагрузки должно быть больше 1
	кОм)
Функции выходов	Управляющий выход, сигнальный выход,
	ретрансляционный выход (только для аналогового
	выхода 1-й группы)
Функции аварийной	12 режимов аварийной сигнализации
сигнализации	
Коммуникация по RS-485	MODBUS ASCII/RTU, 2400~38400 бит\с
Вибропрочность	10 -55 Γ ц, 10 м/с 2 в течение 10 минут по каждой из трех


	осей
Ударопрочность	Макс. 300 м/c^2 , 3 раза по каждой из трех осей, 6
	направлений.
Рабочая температура окр. среды	$0^{0} - +50^{0} \mathrm{C}$
Температура хранения	$-20^{\circ} - +65^{\circ} \text{ C}$
Максимальная высота	до 2000 м над уровнем моря
установки	
Влажность окружающей среды	35% - 85% относительной влажности (без образования
_	конденсата)
Степень загрязнения окр. среды	2

4. Описание конструкции модулей

DTC1000R/V/C/L

- 1. Переключатель RUN/STOP
- 2. Название модели и схема соединений
- 3. Фиксатор на DIN-рейку
- 4. Терминалы ввода/вывода
- 5. Светодиодные индикаторы
- 6. Направляющие модуля
- 7. Шильдик
- . 8. Слот расширения
- 9. Межмодульный фиксатор
- 10. Посадочное место на DIN-рейку
- 11. Порт RS-485
- 12. Межмодульный фиксатор
- 13. Разъем питания

DTC2000R/V/C/L

- 1. Название модели и схема соединений
- 2. Фиксатор на DIN-рейку
- 3. Терминалы ввода/вывода
- 4. Светодиодные индикаторы
- 5. Направляющие модуля
- 6. Шильдик
- 7. Слот расширения
- 8. Межмодульный фиксатор
- 9. Посадочное место на DIN-рейку
- 10. Слот расширения

5. Тип температурного датчика или сигнала на аналоговом входе

Тип температурного датчика или сигнала на аналоговом входе	Значение регистра	Возможный диапазон
0 - 50 мB	17	0 - 50 MB
4 - 20 mA	16	4 – 20 мА
0-20 мА	15	0 - 20 MA
0 - 10 B	14	0 - 10 B
0-5 B	13	0 - 5 B
Платиновое термосопротивление (Pt100).	12	-200 600°C
Платиновое термосопротивление (JPt100)	11	-20 400 ⁰ C
Термопара типа ТХК (производства СССР или РФ)	10	-200 800°C
Термопара типа U	9	-200 500 ^o C

Temneparyphism komposisiep BTC		
Термопара типа L (ТХК импортная)	8	-200 850°C
Термопара типа В (ТПР)	7	100 1800 ⁰ C
Термопара типа S (ТПП)	6	0 1700°C
Термопара типа R (ТПП)	5	0 1700°C
Термопара типа N (ТНН)	4	-200 1300°C
Термопара типа Е (ТХКн)	3	0 600°C
Термопара типа Т (ТМК)	2	-200 400 ⁰ C
Термопара типа Ј (ТЖК)	1	-100 1200°C
Термопара типа К (ТХА)	0	-200 1300°C

Примечание 1: Когда выбран токовый вход, внешний резистор (250 Ом) подключать НЕ надо, он встроен! Надо только переставить джамперную перемычку в соответствующую позицию. Внимательно ознакомьтесь с пунктом 12. "Токовый вход".

Примечание 2: Заводская установка параметра = 12 (Платиновое термосопротивление Pt100). По умолчанию диапазон аналоговых входов: -999...9999. Для примера, когда выбран вход 0...20 мА: -999 будет соответствовать 0 мА, а 9999 будет соответствовать 20 мА. Если изменить (в параметрах tP-H и tP-L) входной диапазон на 0...2000, то 0 будет соответствовать 0 мА, а 2000 будет соответствовать 20 мА. 1 ед.=0.01мА.

6. Функции выходов

В регуляторе температуры DTC существует три типа функций работы выходов: управляющий выход (управление нагревом/охлаждением), сигнальный выход, ретрансляционный выход.

Управляющие выходы

Регуляторы температуры DTC могут индивидуально управлять процессом нагрева или охлаждения. Разница между ними состоит в том, что в функции нагрева управляющий выход активируется при падении температуры (например, для включения нагревательного элемента), а в функции охлаждения управляющий выход активируется при превышении температуры (например, для включения компрессора охлаждения, вентилятора).

Регуляторы DTC имеют так же возможность одновременного управления нагревом и охлаждением (двухконтурное управление). При этом один из управляющих выходов (например OUT1) должен быть соединен с нагревателем, а другой (например OUT2) - с охлаждающим устройством. По каждому выходу может осуществляться регулирование по ПИД-закону.

Методы регулирования в обоих случаях могут быть следующие: ПИД-регулирование, двухпозиционное управление (вкл/выкл), ручное управление, ПИД-регулирование с программным управлением.

Одноконтурное управление:

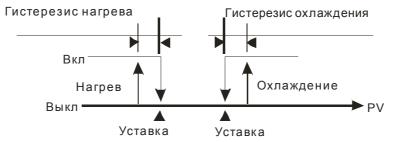


Рис1: Двухпозиционное регулирование для одного выхода

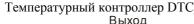


Рис 2: ПИД-регулирование, управление охлаждением

Рис 3: ПИД-регулирование, управление охлаждением

Двухконтурное управление:

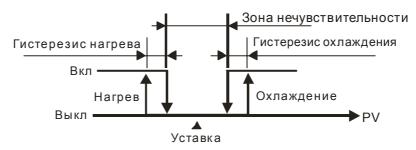


Рис4: Двухпозиционное регулирование при двухконтурном управлении

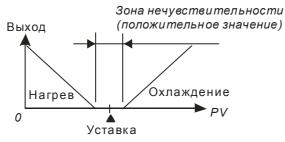


Рис 5: ПИД-регулирование. Двухконтурное управление с положительной зоной нечувствительности

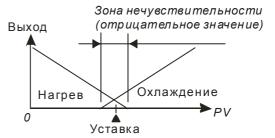


Рис 6: ПИД-регулирование. Двухконтурное управление с отрицательной зоной нечувствительности

Описание функций и параметров:

Регуляторы температуры DTC имеют возможность автоматически пошагово (по заданным значениям температуры и интервалам времени на каждом шаге) управлять процессом изменения и поддержания заданной температуры (по ПИД-закону). Максимально можно задать 8 наборов уставок (набор N 0-7) по 8 уставок (шаг 0-7) в каждом наборе. Выполнение каждого набора уставок можно повторять (до 99 раз) и задавать различный порядок очередности выполнения требуемых наборов уставок.

Параметры программного управления:

(1030H): Этот параметр используется для установка начального набора уставок с которого начнется выполнение режима пошагового управления (изменение возможно только в состоянии STOP).

(2000H~203FH): В этих параметрах задаются уставки температуры для шагов 0 – 7. Если уставка температуры в выбранном шаге, будет равна уставке в предыдущем шаге, будет происходить выдержка температуры в течение времени, заданном в параметре (2080H~20BFH). Если уставка температуры в выбранном шаге будет больше/меньше чем уставка в предыдущем шаге, будет происходить плавный нагрев/охлаждение в течение времени, заданном в параметре (2080H~20BFH).

 $(2080H\sim20BFH)$: В этих параметрах задаются интервалы времени для каждого из шагов 0-7.

(1060H~1063H): Этот параметр используется для выбора следующего набора уставок, который будет выполняться после данного набора.

Для примера, если (1062H)= 4, то после выполнения набора уставок №2 будет выполняться набор уставок №4. Если выбрана OFF – программное выполнение завершится после выполнения данного набора.

(1050H~1053H): Количество повторных циклических выполнений данного набора уставок. Максимальное количество повторных циклов до 99.

Для примера, если (1053H) = 4, то набор уставок №3 будет дополнительно выполняться еще 4 раза. Полное число циклов набора №3 = 1 + 4 = 5 раз.

 $(1040H\sim1043H)$: Выбор количества выполняемых шагов в данном наборе уставок. Может быть задано от 0 до 7.

Для примера, если (1047H) = 2, то в наборе уставок №7 будут выполняться только первые 3 шага (шаг \mathbb{N} 0 - \mathbb{N} 2).

Выполнение программы:

Когда (1068Н) = 1, идет выполнение программы начиная с набора, заданного в (1030Н).

Когда (1068Н) = 2, программа будет остановлена и управляющие выходы отключены.

Когда (1068H) = 0, выполнение программы будет остановлено, регулирование температуры на это время будет осуществляться на уставке предшествующей остановке. После установки (1068H) = 1, выполнение программы начнется сначала (с шага №0 начального набора уставок).

Когда (1068H) = 3, выполнение программы будет остановлено, регулирование температуры на это время будет осуществляться на уставке предшествующей остановке. После установки (1068H) = 1, выполнение программы будет продолжено (с текущего шага).

Ретрансляционный (пропорциональный) выход

Аналоговый выход 1-й группы регулятора DTC может использоваться для пропорциональной передачи входного измеренного значения по выходу. Например, когда на входе (с диапазоном входных значений 0-1000) значение 0, на выходе будет сигнал 0 мА (0B). Когда на входе значение 1000, на выходе будет сигнал 20 мА (10B).

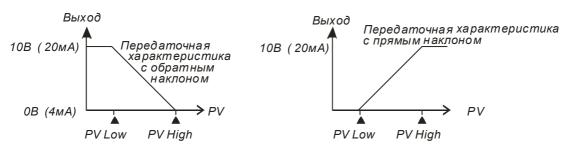


Рис 7: Пропорциональный выход

Сигнальный выход

Выход аварийной сигнализации может работать в одном из 12 режимов, показанных ниже. Выход активируется при отличии в большую или меньшую сторону текущего значения температуры (PV) от значения уставки (SV).

Значение	Режим работы выхода аварийной сигнализации	Функция на выходе
0	Нет функции аварийной сигнализации	Выход отключен
1	Выход за границы верхнего и нижнего пределов температуры. Выход включается, когда текущее значение температуры PV выше, чем значение уставки SV+AL-H (верхний предел сигнализации) или ниже, чем значение уставки SV-AL-L (нижний предел сигнализации).	ON OFF SV-(AL-L) SV SV+(AL-H)
2	Выход за границу верхнего предела. Выход включается, когда текущее значение температуры PV выше, чем значение уставки SV+AL-H (верхний предел сигнализации).	ON OFF SV SV+(AL-H)
3	Выход за границу нижнего предела. Выход включается, когда текущее значение температуры PV ниже, чем значение уставки SV-AL-L (нижний предел сигнализации).	ON OFF SV-(AL-L) SV
4	Инверсный выход за границы верхнего и нижнего пределов температуры. Выход включается, когда текущее значение температуры PV находится в пределах значения уставки SV+AL-H и SV-AL-L.	ON OFF SV-(AL-L) SV SV+(AL-H)
5	Выход за границы верхнего и нижнего пределов температуры по абсолютному значению. Выход включается, когда текущее значение температуры PV выходит за пределы, установленные значениями AL-H и AL-L.	ON OFF AL-L O AL-H
6	Выход за границу верхнего предела температуры по абсолютному значению. Выход включается, когда текущее значение температуры PV выходит за предел, установленный значением AL-H.	ON OFF 0 AL-H
7	Выход за границу нижнего предела температуры по абсолютному значению. Выход включается, когда текущее значение температуры PV выходит за предел, установленный значением AL-L.	ON OFF AL-L 0
8	Выход за границы верхнего и нижнего пределов температуры с ожиданием прохождения последовательности. Выход включается, когда текущее значение температуры PV выше, чем значение уставки SV+AL-H (верхний предел сигнализации) или ниже, чем значение уставки SV-AL-L (нижний предел сигнализации).	ON OFF SV-(AL-L) SV SV+(AL-H)
9	Выход за границу верхнего предела с ожиданием прохождения последовательности. Выход включается, когда текущее значение температуры PV выше, чем значение уставки SV+AL-H (верхний предел сигнализации).	ON OFF SV SV+(AL-H)
10	Выход за границу нижнего предела с ожиданием прохождения последовательности. Выход включается, когда текущее значение температуры PV ниже, чем значение уставки SV-AL-L (нижний предел сигнализации).	ON OFF SV-(AL-L) SV

11	Выход за границу верхнего предела с гистерезисом. Выход включается, когда текущее значение температуры PV выше, чем значение уставки SV+(AL-H), а выключается, когда текущее значение температуры PV ниже, чем значение уставки SV+(AL-L).	ON OFF SV AL-L AL-H				
12	Выход за границу верхнего предела с гистерезисом. Выход включается, когда текущее значение температуры PV ниже, чем значение уставки SV-(AL-H), а выключается, когда текущее значение температуры PV выше, чем значение уставки SV-(AL-L).	ON OFF AL-H AL-L SV				

Примечания: Значения AL-H и AL-L включают в себя AL1H, AL2H и AL1L, AL2L. Когда выход 1-й группы работает в сигнальном режиме, будут использоваться AL1H(1024H) и AL1L(1025H). Когда выход 2-й группы работает в сигнальном режиме, будут использоваться AL2H(1026H) и AL2L(1027H).

7. Светодиодная индикация

- 1. Когда на прибор подано напряжение питания, будет светиться POWER LED.
- 2. По состоянию светодиодов в течение первой секунды после подачи питания можно получить информацию о протоколе коммуникации, а течение следующей секунды о коммуникационном адресе контроллера (см. таблицу). После этого светодиоды перейдут в нормальный режим индикации.
 - 3. Когда прибор находится в рабочем режиме регулирования, будет светиться RUN LED.
- 4. При возникновении ошибки по входу, в памяти или при коммуникационной передаче, будет светиться ERROR LED.
 - 5. Когда активен какой-либо выход, будет светиться соответствующий светодиод.
 - 6. В режиме самонастройки ПИД-регулятора, будет мигать AT LED.
- 7. RX LED будет мигать во время приема данных, а TX LED будет мигать во время передачи данных по RS-485.

Формат передачи светодиодами информации о протоколе коммуникации:

AT	TX	RX	O1	O2	Err	Run
0	00: 2400 бит/о 01:4800 бит/о 10:9600 бит/о 11:19200 бит/ 00:38400 бит/	: :	01:I	None Even Odd	0: ASCII 1: RTU	0:2 Stop bit 1:1 Stop bit

Коммуникационный адрес отображается в двоичном коде светодиодами от AT (6 бит) до RUN (0 бит).

8. Пароль

По умолчанию пароль не установлен. Пароль активизируется после ввода в соответствующие коммуникационные адреса 4-х байтовое число. Существует 3 уровня защиты паролем.

- 1. Уровень1: состояние светодиодов, установочных параметров и входные значения могут быть считаны по RS-485, но не могут быть изменены.
- 2. Уровень 2: состояние светодиодов, установочных параметров и входные значения могут быть считаны по RS-485, а также могут быть изменены.
- 3. Уровень 3: все уставки могут быть считаны по RS-485, но изменены могут быть только уставки заданной температуры и параметры самонастройки AT.
 - 4. Нет пароля.

Как только пароль установлен в (106EH~1070H), будет введен уровень 1. Для ввода другого уровня, введите значение 1 в соответствующий битовый регистр 106BH~106DH (см. коммуникационные адреса и регистры). После выключения и включения питания, произойдет переход к соответствующему уровню доступа. Если защита паролем должна быть отключена, надо очистить все регистры установки пароля.

Для активизации функции пароля, надо записать требуемый пароль в регистры (106EH~1070H) когда защита паролем отключена. Чтобы отключить защиту паролем, предназначенная установка пароля должна быть записана в специальный регистр 106EH~1070H.

Состояние пароля может быть прочитано в 106ЕН~1070Н в соответствие с ниже приведенной таблицей:

Бит	0	1	2	3	4	5	6
Состоянно	Уровень 1	Уровень 2	Уровень 3	Уровень 1	Уровень 2	Уровень 3	Нет
Состояние	у ровень 1	у ровень 2	у ровень 3	блокирован	блокирован	блокирован	блокировки

Бит=0 означает, что пароль не установлен. Бит=1 означает заданный пароль (b0~b2). b3~b6 используются для отображения текущего состояния пароля.

9. Синхронизация протокола коммуникации и функция автоопределения идентификационного номера (ID)

При использовании функции автоопределения ID-номера, протокол коммуникации DTC2000 будет таким же, как в DTC1000. ID-номера приборов будут последовательно увеличиваться.

- 1. Флаг автонастройки коммуникации должен быть равен "1" для DTC1000 (регистр 1022H).
- 2. Подключите DTC2000 к базовому модулю (при выключенном питании). Затем подайте напряжение питания.
 - 3. Протокол коммуникации по умолчанию: 9600bps, 7bits, Even, 1 stop bit.
 - 4. Эта функция будет выполняться в течение 3~5 сек после подачи питания.

10. Параметры коммуникации по RS-485

- Поддержка скорости передачи: 2400, 4800, 9600, 19200, 38400 бод;
- Протокол связи: ModBus (ASCII или RTU);
- Неподдерживаемые форматы: 7,N,1 или 8,O,2 или 8,E,2
- Возможные коммуникационные адреса: 1 255
- Коды функций: 03H для чтения содержимого регистра (максимум 8 слов), 06H для записи 1 слова в регистр; 01H для чтения битовых данных (максимум 16 бит), 05H для записи 1 бита в регистр
- Адрес и содержимое регистров данных:

Адрес	Заводское значение	Содержимое	Пояснение
1000Н		Текущее измеренное значение температуры PV (переменная процесса)	Дискретность: температурный вход = 0.1грд.; аналоговый вход = 1ед Индикация ошибок: 8002H: Статус инициализации (значение температуры неполучено); 8003H: Нет термодатчика; 8004H: Ошибка измерения; 8006H: Измеренное значение температуры выходит за заданный диапазон;

	1	111cp D1C		
			8007H: Ошибка EEPROM	
1001H	0	Значение уставки SV	Дискретность: 0.1 (⁰ С или ⁰ F).	
100111	-	•	Аналоговый вход: 1ед.	
1002H	6000	Верхний предел диапазона	Ограничение значений уставки в	
100211	0000	температуры	верхнем пределе. Дискретность: 0.1	
1003H	-200	Нижний предел диапазона	Ограничение значений уставки в	
100311	-200	температуры	нижнем пределе. Дискретность: 0.1	
		Тип используемого датчика	Cv. Tvi Tovijonomynyogo vomivio	
1004H	12	температуры или	См. Тип температурного датчика	
		аналогового сигнала	или аналогового входа	
			0: ПИД-регулятор;	
			1: двухпозиционный регулятор;	
1005H	0	Метод регулирования	2: ручное управление	
100311	U	Метод регулирования	3: программное управление по	
			предустановленным значениям	
			температуры и времени.	
		Период следования	0 ~ 99 секунд	
1007H	4	импульсов на управляющем	(0 = 0.5 cek)	
		выходе 1	(0 - 0.3 cck)	
		Период следования	0 ~ 99 секунд	
1008H	4	импульсов на управляющем	(0 = 0.5 сек). Не действительно при	
100011	7	выходе 2	одновременном управлении по двум	
		выходе 2	выходам.	
1009H	476	Полоса пропорциональности	1 ~ 9999, дискретность: 0.1грд. (1ед.)	
	470	ПИД-регулятора (РВ)	1 7777, дискретность. О.Прд. (тед.)	
100AH	260	Время интегрирования (Ті)	0 ~ 9999	
100BH	41	Время дифференцирования	0 ~ 9999	
TOODII	71	(Td)	0 7777	
100CH	0	Ограничение	0~1000, дискретность: 0.1%	
100011		интегрирования	o 1000, Anexperiments. 0.170	
		Величина статической		
100DH	0	ошибки регулирования,	0~1000, дискретность: 0.1%	
		когда Ti=0		
		Коэффициент для Р-		
		составляющей ПИД-		
100EH	100	регулятора для	1 ~ 9999, дискретность: 0.01	
		управляющего выхода 2 при		
		двухконтурном управлении.		
100FH	0	Зона нечувствительности при	-999~9999, дискретность: 0.1грд.	
100111	•	двухконтурном управлении	(1ед.)	
1010H	0	Гистерезис для	0~9999, дискретность: 0.1грд. (1ед.)	
101011	0	управляющего выхода 1	о ээээ, дискретноств. олгрд. (тед.)	
1011H	0	Гистерезис для	0~9999, дискретность: 0.1грд. (1ед.)	
101111	0	управляющего выхода 2	о ээээ, дискретноств. олгрд. (тед.)	
		Чтение и запись отношения		
1012H	0	длительности импульса к	Дискретность: 0.1% (запись	
101211		периоду на управляющем	возможна только в ручном режиме)	
		выходе 1.		
		Чтение и запись отношения		
1013H	0	о длительности импульса к	Дискретность: 0.1% (запись	
101511		периоду на управляющем		возможна только в ручном режиме)
		выходе 2.		
1014H	0	Установка верхнего предела	1 ед. = 2.8 мкА (на токовом выходе)	

Temnepary	рпый контро		11				
		значений на аналоговом выходе	=1.3 мВ (на потенциальном выходе)				
		Установка нижнего предела	1 2 0 4 (
1015H	0	значений на аналоговом	1 ед. = 2.8 мкA (на токовом выходе)				
		выходе	=1.3 мВ (на потенциальном выходе)				
		Смещение входной	−999 ~ +999. Дискретность: 0.1грд.				
1016H	0	характеристики	(1ед.)				
		 	(10Д.)				
1020H	0	Режим работы сигнального	См. "Сигнальные выходы"				
		выхода 1					
1021H	0	Режим работы сигнального	См. "Сигнальные выходы"				
102111		выхода 2					
1022H	0	Флаг автонастройки	0: автонастройка запрещена				
102211	U	параметров коммуникации	1: автонастройка разрешена				
		Верхний предел для					
1024H	40	включения аварийной	См. "Сигнальные выходы"				
		сигнализации 1 (AL1H)					
		Нижний предел для					
1025H	40	включения аварийной	См. "Сигнальные выходы"				
102311	40	<u> </u>	см. сигнальные выходы				
		сигнализации 1 (AL1L)					
100 (11	4.0	Верхний предел для					
1026H	40	включения аварийной	См. "Сигнальные выходы"				
		сигнализации 2 (AL2H)					
1027H	40	Нижний предел для					
		включения аварийной	См. "Сигнальные выходы"				
		сигнализации 2 (AL2L)					
100 4 77		Чтение/запись состояния	b1:ALM2, b2: °C, b3: °F, b4: ALM1,				
102AH		контроллера	b5: O2, b6:O1, b7: AT				
		Выбор наклона передаточной					
102CH	0	характеристики	0: прямая характеристика				
102C11		1 1	1: обратная характеристика				
		пропорционального выхода	10. DIN 11.EDD 12. 02 12. 01 14.				
102EH		Чтение состояния	b0: RUN, b1:ERR, b2: O2, b3: O1, b4:				
		светодиодов	RX, b5:TX, b6: AT				
102FH		Версия программного	0х100 соответствует версии 1.00				
102111		обеспечения	onros costererentes espenia 1.00				
1030H	0	Начальный набор уставок в	0 ~ 7				
103011	U	программном режиме	0 4 7				
		Индикация остатка времени					
1032H		выполнения цикла	Ед.: секунды				
		программы					
		Индикация остатка времени	_				
1033H		выполнения шага программы	Ед.: минуты				
		Индикация номера					
1034H		-	0~7				
1034П		выполняемого шага	0~7				
		программы					
102555		Индикация номера					
1035H		выполняемого набора	0 ~ 7				
		уставок программы					
1037H	1000	Верхний предел	0~100% от макс. значения на				
103/П	1000	пропорционального выхода	аналоговом выходе, дискр.: 0.1%				
102011	^	Нижний предел	0~100% от макс. значения на				
1038H	0	пропорционального выхода	аналоговом выходе, дискр.: 0.1%				
1040H~		Количество выполняемых	, <u> </u>				
1043H	7	шагов в данном наборе	0 ~ 7				
107311		патов в данном наобре	<u>l</u>				

remirepary	энын кентр	omep bic	12				
		уставок					
105011		Количество повторных					
1050H~	0	циклических выполнений	0~199				
1053H		данного набора уставок					
		Выбор следующего набора	0 ~ 8. Если выбрано значение 8 –				
1060H∼		уставок, который будет	программное выполнение				
1063H	0	выполняться после данного	завершится после выполнения				
100311		набора.	данного набора.				
		Управление выполнением	0: стоп, 1: выполнение, 2: конец				
1068H	1	программы	программы, 3: пауза в программе				
		программы					
		Prison possesso poporo	0: управление нагревом,				
1069H	0	Выбор режима работа	1: управление охлаждением, 2: аварийная сигнализация,				
		выхода 1					
			3: пропорциональный выход				
		Выбор режима работа	0: управление нагревом,				
106AH	0	выхода 2	1: управление охлаждением,				
			2: аварийная сигнализация				
106BH	0	Уровень доступа 1. Чтение и	Будет соответствовать паролю				
100011	U	запись разрешены.	уровня доступа 1 (106Е)				
106CH	0	Vnapavy vaaryvra 2	Будет соответствовать паролю				
106CH	0	Уровень доступа 2.	уровня доступа 2 (106F)				
106DH	0		Будет соответствовать паролю				
		Уровень доступа 3.	уровня доступа 3 (1070)				
	0	Установка пароля для уровня	Очистите старый пароль перед новой				
106EH		доступа 1.	установкой пароля.				
		Установка пароля для уровня	Очистите старый пароль перед новой				
106FH	0	доступа 2.	установкой пароля.				
			-				
1070H	0	Установка пароля для уровня	Очистите старый пароль перед новой				
		доступа 3.	установкой пароля.				
1071H	1	Коммуникационный адрес DTC	1~247				
		Коммуникационный формат					
1072H	0		RTU:1, ASCII:0				
1073H	2	данных	0~4: 2400~38400				
10/3П		Скорость передачи данных	0~4. 2400~38400				
1074H	1	Длина пакета передачи	0: 8bit 1: 7bit				
105511		данных	0.77 1.7 0.011				
1075H	1	Установка паритета	0: None 1:Even 2: Odd				
1076H	1	Стоповый бит	0: 2 stop bit				
- 0 , 0			1: 1stop bit				
		В этих параметрах задаются					
		уставки температуры для					
2000H∼	0	шагов 0 – 7 всех 8 наборов	-999 ~ 9999. Дискретность: 0.1грд.				
203FH		уставок. Для набора 0	-ууу с уууу. дискретноств. б.тгрд.				
		температура задается по					
		адресам 2000Н – 2007Н					
		В этих параметрах задаются					
	0	интервалы времени для	0.000				
2080H~		шагов 0 – 7 всех 8 наборов					
20BFH		уставок. Для набора 0 время	0 ~ 900 мин.				
202111		задается по адресам 2080Н –					
		2087Н					
		200/11	<u> </u>				

• Адрес и содержимое битовых регистров:

Адрес	Содержимое	Дополнение				
0811H	Выбор единиц отображения для температуры	0: ⁰ F; 1: ⁰ C (значение по умолчанию), 0: выключена (значение по умолчанию), 1: включена.				
0813H	Функция автотестирования (автонастройка ПИД-регулятора)					
0814H	Выбор режима работы (RUN/STOP)	0: работа (значение по умолчанию), 1: стоп.				
0815H	Временный стоп (пауза) режима программного управления	0: работа (значение по умолчанию), 1: пауза.				
0816H	Стоп режима программного управления	0: работа (значение по умолчанию), 1: стоп.				

- Формат передачи данных: командный код 01H: чтение N бит; 05H: запись 1 бита; 03H: чтение N слов; 06H: запись 1 слова.
 - STX (стартовый символ), ADR (адрес устройства в сети), CMD (код команды) **ASCII режим:**

Команда чтения			Ответное сообщение			Команда записи			Ответное сообщение			
STX	·.·	٠.,	STX ':' ':'		STX	٠.,	٠.,	STX	٠.,	٠.,		
ADR 1	'0'	'0'	ADR 1 '0' '0' ADR 1	ADR 1	'0'	'0'	ADR 1	'0'	'0'			
ADR 0	'1'	'1'	ADR 0	' 1'	'1'	ADR 0	'1'	'1'	ADR 0	'1'	'1'	
CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'	CMD 1	'0'	'0'	
CMD 0	'3'	'1'	CMD 0	'3'	'1'	CMD 0	'6'	' 5'	CMD 0	'6'	' 5'	
	'1'	'0'	Число данных	'0'	'0'	Адрес данных Содержание	'1'	'0'	Адрес данных	'1'	'0'	
Стартовый	'0'	'8'	(в байтах) Содержание данных по адресу 1000H/081хН Содержание данных	' 4'	'2'		'0'	'8'		'0'	'8'	
адрес данных	'0'	'1'		'0'	'1'		'0'	' 1'		'0'	' 1'	
данных	'0'	'0'		' 1'	'7'		'1'	'0'		'1'	'0'	
Число	'0'	'0'		'F'	'0'		'0'	'F'		'0'	'F'	
данных	'0'	'0'		' 4'	'1'		'3'	'F'	Содержание данных	' 3'	'F'	
(в словах/	'0'	'0'		'0'		данных	'Е'	'0'		'E'	'0'	
битах)	'2'	'9'		'0'			' 8'	'0'		'8'	'0'	
LRC CHK 1	'E'	'D'	по адресу	'0'		LRC CHK 1	'F'	'Е'	LRC CHK 1	'F'	'Е'	
LRC CHK 0	'A'	ʻD'	1001H	'0'		LRC CHK 0	'D'	'3'	LRC CHK 0	ʻD'	' 3'	
END 1	CR	CR	LRC CHK 1 '0'		'E'	END 1	CR	CR	END 1	CR	CR	
END 0	LF	LF	LRC CHK 0	'3'	'4'	END 0	LF	LF	END 0	LF	LF	
			END 1	CR	CR		_					
			END 0	LF	LF							

LRC (продольная проверка избыточности) рассчитывается следующим образом: суммируются значение байтов от ADR1 до последнего символа данных и вычитается из 100H.

Для примера: 01H+03H+10H+00H+00H+02H=16H,

LRC = 100H - 16H = EAH.

RTU режим:

Команда чтения			Ответное сообщение			Команда записи			Ответное сообщение		
ADR	01H	01H	ADR 01H 01H			ADR	01H	01H	ADR	01H	01H
CMD	03H	02H	CMD	03H	03H	CMD	06H	05H	CMD	06H	05H
Стартовый	10H	08H	Число данных	04H	02H	Адрес	10H	08H	Адрес	10H	08H
адрес данных	00H	10H	(в байтах)	U4Π	υ∠п	данных	01H	10H	данных	01H	10H
Число данных	00H	00H	Содержание	01H	17H	Содержание	03H	FFH	Содержание	03H	FFH
(слов/бит)	02H	09H	данных 1	F4H	01H	данных	20H	H00	данных	20H	00H
CRC CHK Low	C0H	BBH	Содержание	03H		CRC CHK Low	DDH	8FH	CRC CHK Low	DDH	8FH

	•											
CRC CHK High	CBH	A9H	данных 2	20H		CRC CHK High	E2H	9FH	CRC C	CHK High	E2H	9FH
			CRC CHK Low	BBH	77H							
			CRC CHK High	15H	88H							

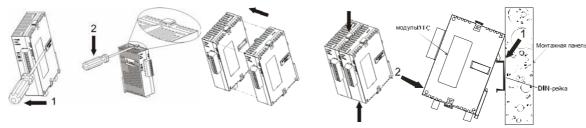
СКС (циклическая проверка избыточности) рассчитывается следующим образом:

Шаг 1 : Загрузка 16-bit регистра (называемого CRC регистром) с FFFFH;

Шаг 2: Исключающее ИЛИ первому 8-bit байту из командного сообщения с байтом младшего порядка из 16-bit регистра CRC, помещение результата в CRC регистр.

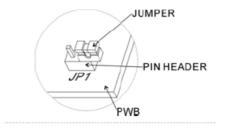
Шаг 3: Сдвиг одного бита регистра CRC вправо с MSB нулевым заполнением. Извлечение и проверка LSB.

Шаг 4: Если LSB CRC регистра равно 0, повторите шаг 3, в противном случае исключающее ИЛИ CRC регистра с полиномиальным значением A001H.

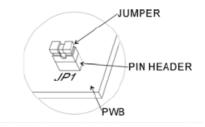

Шаг 5: Повторяйте шаг 3 и 4, до тех пор, пока восемь сдвигов не будут выполнены. Затем, полный 8bit байт будет обработан.

Шаг 6: Повторите шаг со 2 по 5 для следующих 8-bit байтов из командного сообщения.

Продолжайте пока все байты не будут обработаны. Конечное содержание CRC регистра CRC значение. При передачи значения CRC в сообщении, старшие и младшие байты значения CRC должны меняться, то есть сначала будет передан младший байт.


11. Установка

Модули расширения (DTC2000) подключаются к базовому блоку (DTC1000), всего возможно подключение до 7 блоков расширения и устанавливаются на DIN-рейку, как показано ниже:



12.Токовый вход.

При нормальном входе

При токовом входе ($4 \sim 20$ мA, $0 \sim 20$ мA)

Примечание: Если у Вас прибор старой версии и не имеет джампера JP1, то когда выбран токовый вход, должен быть соединен внешний резистор (250 Ом).

ASIA

Delta Electronics, Inc.

Taoyuan1

31-1, Xingbang Road, Guishan Industrial Zone, Taoyuan County 33370, Taiwan, R.O.C. TEL: 886-3-362-6301 / FAX: 886-3-362-7267

EUROPE

Deltronics (The Netherlands) B.V. Eindhoven Office

De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851